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Abstract. A known terminating polynomial ansatz for a finite sub-set of states of the sextic central
potential V (a, b, c; r) = ar2 + br4 + cr6, c > 0, subject to integer related parameter constraints, is
confirmed to apply in two as well as three dimensions. A hidden symmetry relating the eigenstates
of V (a, b, c; r) to those of V (a,−b, c; r) is used to establish the boundary between the ansatz sub-
set and the infinite set of higher states. Connections between the radial wavefunctionsRn(a, b, c; r)
and Rn′ (a,−b, c; r) also provide semiclassical insight into the origin of the parameter constraint.
Finally the ansatz eigenvalue dispositions are related to the phenomenon of quantum monodromy.

1. Introduction

Solutions to the Schrödinger equation for anharmonic central potentials are relevant to
structural phase transitions [1], polaron formation [2], fibre optics [3] and molecular physics [4].
Certain classes of such potentials also have the interesting property that the infinite set of
normalizable bound states can contain a finite sub-set representable by means of terminating
polynomials [6,7] or Laurent series [8–18] provided that the potential parameters are related in
a particular way. Related work [19] employs supersymmetry inspired factorizations to obtain
similar results. A variety of such so-called ‘ansatz’ solutions have been presented [6–18], but
little if any attention has been given to the nature of the boundary between this ansatz sub-set
and the infinite set of higher states.

This paper concerns a hidden symmetry responsible for the above division, in the particular
case of a sextic central potential

V (a, b, c; r) = ar2 + br4 + cr6 c > 0. (1)

Details of the ansatz are presented for two-dimensional motion in a plane, and minor differences
from earlier three-dimensional results are discussed. The distinguishing feature of the ansatz
states is seen to be that their wavefunctions vanish not only as r → ∞, but also as r → i∞,
and it is this double boundary condition that imposes a constraint on the potential parameters
as well as on the energy levels. The substitution r → ir also demonstrates intimate
connections between the energies and wavefunctions of the potential V (a, b, c; r) and those
for V (a,−b, c; r), with the sign of b reversed. It is interesting to note the known existence
of a possibly related symmetry under the substitution r → r−1 for certain inverse anharmonic
potentials [17], but any connection with the present work remains to be established.

The paper starts with a presentation of the ansatz in section 2. The following section
explores the hidden symmetry between the eigenvalues En(a, b, c) and En′(a,−b, c), and
the corresponding wavefunctions. Further insight is provided in section 4 by employing a
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double semiclassical quantization condition on Rn(a, b, c; r) and its analytic continuation
Rn(a, b, c; ir). As a by-product, the ansatz analysis allows the construction of a range of
angular momentum states for given potential parameters (a, b, c) and section 5 gives a brief
account of the resulting joint energy and angular momentum spectrum, under the heading
quantum monodromy [4, 5]. Finally the main conclusions are collected and discussed in
section 6.

2. The wavefunction ansatz

The analysis below follows the ansatz of earlier authors [6, 7], except that the motion is
restricted to two rather than three dimensions. Minor differences from the earlier results will
be indicated.

Solutions to the Schrödinger equation[
− 1

2r

d

dr

(
r

d

dr

)
+
m2

2r2
+ ar2 + br4 + cr6

]
R(r) = ER(r) (2)

are sought in the form

R(a, b, c; r) = exp[−( 1
4αr

4 + 1
2βr

2)]
∞∑
k=0

dkr
2k+|m| (3)

with

α =
√

2c β = b√
2c

. (4)

The coefficients dk may be verified to satisfy the three-term recurrence relation

Akdk + (Bk+1 − E)dk+1 + Ck+2dk+2 = 0 (5)

where

Ak = −b2

4c
+ a +

√
2c(2k + |m| + 2) (6)

Bk = b√
2c

(2k + |m| + 1) (7)

Ck = −2k(k + |m|). (8)

The physical solutions of (5)–(8), with real E, require that Ak−1Ck > 0 for all relevant k,
because the matrix equivalent can then be reduced to a real symmetric form by the substitution

dk =
√
Ak−1

Ck

Ak−2

Ck−1
· · · A0

C1
d ′
k. (9)

However, Ck < 0 for all k, while Ak becomes positive for sufficiently large k, unless the series
is truncated by the condition AN = 0. The physical validity of equation (3) therefore requires
the following constraint on the potential parameters:

a = b2

4c
−

√
2c(2N + |m| + 2) (10)

in which case equation (5) is equivalent to the eigensystem


B0, C1, 0, 0 · · 0
A0, B1, C2 0
0 A1, B2, C3 0

·
·

0, 0, 0, · · AN−1, BN







d0

d1

d2

·
·
dN


 = E




d0

d1

d2

·
·
dN


 (11)
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or

H(a, b, c)d = Ed. (12)

The remaining coefficients dk for k = N + 1, N + 2, . . . ,∞ are set to zero.
Equations (4)–(12) differ from the three-dimensional results of Bose and Varma [7] only

by the presence of |m| in place of (� + 1
2 ) in equations (6)–(8) and by factors of 2 in the

definitions of the potential parameters (a, b, c) and E, arising from the fact that Bose and
Varma [7] omitted factors of one-half from the kinetic energy terms in equation (2). Note also
that parameter sets constrained by (10) allow the construction of (N0 −|m|/2 + 1) ansatz states
with even m values, where N0 + 1 is the number for m = 0. Generic patterns in the resulting
eigenvalues are discussed in section 4.

The main point of this paper is to understand the seemingly arbitrary place of the above
finite sub-set of ansatz states within the infinite bound state spectrum. For example, there
appears at first sight to be nothing to explain the division between the ansatz eigenvalues,
represented by heavy lines in figure 1, and the higher dashed eigenvalues obtained by
diagonalization in a degenerate harmonic oscillator basis [4]. Results are presented for the
four different sign combinations of parameters a and b, consistent with equation (10). An
apparently unrelated observation is that figure 1(d) shows no evidence of the interleaving
of levels with E > 0 expected from the existence of two well separated potential minima.
The reason is that the lowest non-ansatz states shown occur in close lying pairs which are
degenerate within six-figure accuracy for the levels shown. The following sections reveal a
hidden symmetry responsible for these numerical findings.

3. Hidden symmetry

Equation (3) shows that the ansatz functions vanish not only as r → ∞ but also as r → i∞,
and this additional boundary condition lies at the heart of the hidden symmetry. Notice for
example that the substitution r → ir reverses the signs of b andE in (2), leaving the remaining
parameters invariant; and comparison between figures 1(a) and (b) (or figures 1(c) and (d))
confirms that the uppermost ansatz level EN(a, b, c) is indeed the negative of the ground state
E0(a,−b, c) when the sign of b is reversed. In other words the ansatz eigenvalues En(a, b, c)

are bounded above by the negative of E0(a,−b, c).
To explore the connection in another way, suppose that

H(a, b, c)dn = En(a, b, c)dn (13)

and consider the effect of the substitution b → −b. It follows from equations (4)–(8) that
β → −β and Bk → −Bk , while α → α, Ak → Ak and Ck → Ck . Thus, in view of the
tridiagonal nature of equation (11),

H(a,−b, c)d̂n = −En(a, b, c)d̂n (14)

where alternate components of d̂n are sign reversed with respect to dn, i.e. d̂nk = (−1)kdnk .
In other words the ordering of the eigenvalues is simply reversed so that −En(a, b, c)

corresponds to the (N − n)th eigenvalue of H(a,−b, c);

EN−n(a,−b, c) = −En(a, b, c). (15)

The form of the corresponding wavefunction follows from equations (3) and (4)

RN−n(a,−b, c; r) = exp[−( 1
4αr

4 − 1
2βr

2)]
N∑
k=0

d̂nkr
2k+|m|

= exp[−( 1
4αr

4 − 1
2βr

2)]
N∑
k=0

(−1)kdnkr
2k+|m|. (16)
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Figure 1. Low-lying zero-angular-momentum eigenvalues for (a) a = −6.44, b = 1.0, c = 0.1,
(b) a = −6.44, b = −1.0, c = 0.1, (c) a = 22.17, b = 1.0, c = 0.01, and (d) a = 22.17,
b = −1.0, c = 0.01. Heavy lines mark the ten ansatz eigenvalues for these parameter combinations.

Finally it follows by comparison with (16) and the analytical continuation of (3) that

RN−n(a,−b, c; r) = Rn(a, b, c; ir). (17)

Equations (15) and (17) embody the hidden symmetry of the ansatz states, which is
strikingly displayed in figure 2, by plotting Rn(a, b, c; r) and their analytic continuations
Rn(a, b, c; ir) as functions of z = r2, for the four cases illustrated in figure 1.

Separate normalizations were applied over positive and negative z ranges, in order to
match the oscillation amplitudes to the energy spacings. The calculations were all performed
for N = 9 and each wavefunction displays a total of nine nodes, summed over positive and
negative ranges of z, although in certain cases the spacing close to z = 0 is too small for
graphical resolution. The inversion symmetry between figures 2(a) and (b) and figures 2(c)
and (d) is a pictorial manifestation of equations (15) and (17).

4. Semiclassical quantization

Figure 2 also has a semiclassical interpretation, in the sense that the wavefunction oscillations
are restricted to regions where the classical coordinates and momentum are either both real or
both imaginary, giving two real action integrals. It is therefore illuminating to interpret the
ansatz constraint (10) and the resultant hidden symmetry as a consequence of simultaneous
quantization for Rn(a, b, c; r) and its analytical continuation R(a, b, c; ir).
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Figure 2. Ansatz wavefunctions for the parameter values in figure 1, presented as functions of
z = r2. The hidden symmetry with respect to the transformations z → −z, E → −E and b → −b

is clearly displayed.

The four turning points for the ansatz states in figure 2(a) are labelled z1 > z2 � 0 �
z3 > z4 with corresponding coordinates ri , and the relevant Bohr quantization integrals are
taken as

I =
∫ r1

r2

√
2(E − ar2 − br4 − cr6) − m2

r2 dr

= 1

2

∫ z1

z2

√
2(Ez − az2 − bz3 − cz4) − m2

z
dz (18)

and

J = −1

2

∫ z3

z4

√
2(Ez − az2 − bz3 − cz4) − m2

z
dz. (19)

The negative sign is introduced in equation (19) to ensure that J > 0 because z < 0 for
z4 < z < z3.

The direct evaluation of I and J in terms of elliptic integrals leads to awkward
manipulations, but it is sufficient for present purposes to note that [20](

∂I

∂E

)
m

= 1

2
√

2c

∫ z1

z2

dz√
(z1 − z)(z − z2)(z − z3)(z − z4)

= gK(k) (20)

while (
∂J

∂E

)
m

= − 1

2
√

2c

∫ z3

z4

dz√
(z1 − z)(z2 − z)(z3 − z)(z − z4)

= −gK(k) (21)
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where k2 = [(z1 − z2)(z3 − z4)/(z1 − z3)(z2 − z4)], g = 2/
√
(z1 − z3)(z2 − z4) and K(k)

is the complete elliptic integral of the first kind [20]. It follows on integrating the sum of
equations (20) and (21) that

I + J = K = const. (22)

Moreover, the constant may be evaluated by choosing the energy such that z3 = z4 and J = 0,
in which case [21]

I =
√

2c

2

∫ z1

z2

√
(z1 − z)(z − z2)(z − z3)

z
dz

= π
√

2c

16
[(z1 − z2)

2 − 4[(z1 + z2) − 2
√
z1z2]z3]. (23)

Finally I may be expressed in terms of the potential parameters by use of the following
identities for the roots of the quartic polynomial when z3 = z4:

z1 + z2 + 2z3 = −
(
b

c

)
(24)

z1z2 + 2(z1 + z2) + z2
3 = a/c = b2

4c2
− 2√

2c
(2N + |m| + 2) (25)

z1z2z
2
3 = m2. (26)

It is readily shown by combining equations (23)–(26) that

I + J = π(N + 1) (27)

remembering of course that J = 0 when (24)–(26) apply. Given the real quantization
condition [22]

I = (n + 1
2 )π (28)

equation (27) requires that

J = (N − n + 1
2 )π (29)

which is clearly consistent with the labelling in equation (17) and with the plots in figure 2.
The remarkable feature of these results is that the frequencies (∂E/∂I)m and (∂E/∂J )m

of the two classical oscillators are identical for common (E,m) values for any sextic form
V = ar2 + br4 + cr6, and that simultaneous quantization leads directly to the parameter
constraint (10). It is interesting to note that the same reasoning can also be applied in three
space dimensions, provided that the Langer substitution [22,23] �(�+1) → (�+ 1

2 )
2 is applied.

The effect is to replacem2 by (�+ 1
2 )

2 in equations (18), (19) and (26), while |m| in equation (25)
changes to � + 1

2 in accordance with the three-dimensional variant of equation (10) given by
Bose and Varma [7].

An interesting slant on the hidden symmetry may also be obtained by reversing the
semiclassical argument. Suppose for example that N in equations (10) and (25) were taken
to be arbitrary. The simultaneous quantization of I and J required to satisfy the boundary
conditionsR(z) → 0 as z → ±∞ can apply only for integerN . Hence the additional boundary
condition at z → −∞ requires that the parameter a must be ‘quantized’ by equation (10), in
addition to the normal energy quantization.

A minor extension of the above reasoning also explains the close energy degeneracies
between the pairs of low-lying positive energy states in figure 1(d). The analogue of J becomes

J ′ = 1

2

∫ z3

z4

√
2(Ez − az2 − bz3 − cz4) − m2

z
dz (30)
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without the negative sign because now z > 0 in the range z4 < z < z3. Thus

dJ ′

dE
= dI

dE
(31)

which means that the level spacings in the inner and outer wells are precisely equal. Moreover

I − J ′ = π(N + 1) (32)

by extension of equation (27), so that quantization in the inner well

J ′ = (ninner + 1
2 )π (33)

requires simultaneously that

I = (nouter + 1
2 )π

with

nouter = N + ninner + 1. (34)

5. Quantum monodromy

It was noted in section 2 that any parameter set constrained by equation (10) implies the
existence of N0 − |m|/2 + 1 ansatz states for even values of |m|, where N0 + 1 is the number
for m = 0. Moreover the ansatz energy range for a < 0 necessarily includes the point
(m,E) = (0, 0) (see figures 1(a) and (b)), which is known to be critical for the observation of
quantum monodromy in the eigenvalue spectrum of any cylindrically symmetric system with
a locally quadratic maximum [4]. The classical origin of this phenomenon arises from non-
analyticity in the action integral at (m,E) = (0, 0), which results in a topological obstruction
to the global construction of classical action-angle variables [24].

Other consequences for the joint spectrum are illustrated in figure 3, using parameters
chosen to place the critical point at the centre of the diagram. One observation concerns
changes in the shapes of the dashed and continuous joining curves above and below the
origin. The latter, which join points of common radial quantum number n in the notation
of equations (13)–(17), are seen to cross the line m = 0 smoothly for E < 0 but to take on
a kink for E > 0. Similarly the dashed curves, which link points of common 2n + |m|, are
smooth for E > 0 and kinked for E < 0. Non-analyticity in the relevant action integral is
responsible for the dislocation in each case.

The dislocations also have consequences for the parallel transport around the origin of any
vector on the lattice of quantum numbers. As shown elsewhere [5, 24] any vector (#m,#n)

returns to (#m′,#n′) such that(
#m′

#n′

)
=

(
1 0
1 1

) (
#m

#n

)
because, in semiclassical terms, parallel transport entails a switch from one sheet of the classical
action integral to the next [5].

Since the current literature on quantum monodromy is largely couched in semiclassical
terms [4,5,24–27], it is hoped that the present finite matrix representation will add insight into
the purely quantum mechanical origin of this interesting phenomenon.

6. Summary and conclusion

An existing ansatz for finite sub-sets of states of a sextic central potential was shown to apply in
two as well as three dimensions, provided that the potential coefficients (a, b, c)were subject to
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Figure 3. Quantum monodromy for a < 0, illustrated by the eigenvalue distribution of the ansatz
states for a = −1.252, b = 0.001 and c = 0.001. Solid and dashed lines join points of common n

and 2n + |m| respectively.

an integer related constraint. An analytic continuation argument was used to establish that the
boundary between this sub-set and the infinite set of higher normalizable sets was attributable
to a hidden symmetry, such that the ansatz eigenvaluesEn(a, b, c) ofV (a, b, c; r) are bounded
above by the negative of the lowest eigenvalue, E0(a,−b, c), of the potential V (a,−b, c; r),
with the quartic potential coefficient reversed. Implied connections between the wavefunctions
Rn(a, b, c; r) and their analytic continuations Rn(a, b, c; ir), were presented. The origin of
the integer related (i.e. quantized) potential parameter constraint was also intrepreted by Bohr
quantization techniques. Finally the relevance of the ansatz wavefunction construction to the
recently studied phenomenon of quantum monodromy was indicated.
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